Exercise 26

Find the line through $(3,1,-2)$ that intersects and is perpendicular to the line $x=-1+t$, $y=-2+t, z=-1+t$ [Hint: If $\left(x_{0}, y_{0}, z_{0}\right)$ is the point of intersection, find its coordinates.]

Solution

The equation for the line we're trying to find is

$$
\mathbf{r}(t)=\mathbf{m} t+\mathbf{b}
$$

We require that the direction vector \mathbf{m} be orthogonal to the direction vector of the given line.

$$
(-1+t,-2+t,-1+t)=(t, t, t)+(-1,-2,-1)=(1,1,1) t+(-1,-2,-1)
$$

In other words, the dot product of \mathbf{m} and $(1,1,1)$ is zero.

$$
\begin{gather*}
\mathbf{m} \cdot(1,1,1)=0 \\
\left(m_{x}, m_{y}, m_{z}\right) \cdot(1,1,1)=0 \\
m_{x}+m_{y}+m_{z}=0 \tag{1}
\end{gather*}
$$

The sum of the components must be zero. Make it so that the line goes through $(3,1,-2)$ at $t=0$.

$$
\mathbf{r}(0)=(3,1,-2)=\mathbf{b}
$$

As a result,

$$
\begin{aligned}
\mathbf{r}(t) & =\left(m_{x}, m_{y}, m_{z}\right) t+(3,1,-2) \\
& =\left(m_{x} t, m_{y} t, m_{z} t\right)+(3,1,-2) \\
& =\left(m_{x} t+3, m_{y} t+1, m_{z} t-2\right) .
\end{aligned}
$$

Also, make it so that this line and the given line intersect at $t=t_{0}$.

$$
\mathbf{r}\left(t_{0}\right)=\left(m_{x} t_{0}+3, m_{y} t_{0}+1, m_{z} t_{0}-2\right)=\left(-1+t_{0},-2+t_{0},-1+t_{0}\right)
$$

Match the components to obtain a system of equations.

$$
\begin{aligned}
& m_{x} t_{0}+3=-1+t_{0} \\
& m_{y} t_{0}+1=-2+t_{0} \\
& m_{z} t_{0}-2=-1+t_{0}
\end{aligned}
$$

Together with equation (1) there are four equations and four unknowns. Solving it yields

$$
m_{x}=-1 \quad \text { and } \quad m_{y}=-\frac{1}{2} \quad \text { and } \quad m_{z}=\frac{3}{2} \quad \text { and } \quad t_{0}=2 .
$$

Therefore, an equation for the desired line is

$$
\mathbf{r}(t)=\left(-1,-\frac{1}{2}, \frac{3}{2}\right) t+(3,1,-2) .
$$

